{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# 02 Analyzing a cumulative relative frequency graph (optional)" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "%%html\n", "" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "import pandas as pd\n", "from pandas import Series, DataFrame\n", "import matplotlib.pyplot as plt\n", "from scipy import stats" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "[khanacademy](https://www.khanacademy.org/math/ap-statistics/density-curves-normal-distribution-ap/percentiles-cumulative-relative-frequency/v/analyzing-a-cumulative-relative-frequency-graph)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "[datasciencemadesimple](http://www.datasciencemadesimple.com/percentile-rank-column-pandas-python-2/)\n", "[pandas.DataFrame.rank](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.rank.html)" ] }, { "cell_type": "code", "execution_count": 25, "metadata": {}, "outputs": [], "source": [ "data = {\n", " 'Name':['George','Andrea','micheal','maggie','Ravi','Xien','Jalpa'],\n", " 'Mathematics_score':[62,47,55,74,32,77,86]\n", "}" ] }, { "cell_type": "code", "execution_count": 26, "metadata": {}, "outputs": [], "source": [ "df = DataFrame(data)" ] }, { "cell_type": "code", "execution_count": 27, "metadata": {}, "outputs": [], "source": [ "df['Rank'] = df['Mathematics_score'].rank()" ] }, { "cell_type": "code", "execution_count": 28, "metadata": {}, "outputs": [], "source": [ "df['Percentile_rank'] = df['Mathematics_score'].rank(pct=True)" ] }, { "cell_type": "code", "execution_count": 29, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
NameMathematics_scoreRankPercentile_rank
0George624.00.571429
1Andrea472.00.285714
2micheal553.00.428571
3maggie745.00.714286
4Ravi321.00.142857
5Xien776.00.857143
6Jalpa867.01.000000
\n", "
" ], "text/plain": [ " Name Mathematics_score Rank Percentile_rank\n", "0 George 62 4.0 0.571429\n", "1 Andrea 47 2.0 0.285714\n", "2 micheal 55 3.0 0.428571\n", "3 maggie 74 5.0 0.714286\n", "4 Ravi 32 1.0 0.142857\n", "5 Xien 77 6.0 0.857143\n", "6 Jalpa 86 7.0 1.000000" ] }, "execution_count": 29, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df" ] }, { "cell_type": "code", "execution_count": 35, "metadata": {}, "outputs": [], "source": [ "df = df.sort_values('Mathematics_score')" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": 38, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEGCAYAAABo25JHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nO3deXxU9b3/8deHJJCwBgSEhCBbDLKDEde64IJbFfeltbVaUW+11l6p0lu91v5624pd3Jd63dpbARXRKooLotaNBIIEkMgmZGETCGsSsnx+f8yBBgwwSCaTmXk/H488MufMmTOfb5KZd875nvl+zd0REZHE1SLaBYiISHQpCEREEpyCQEQkwSkIREQSnIJARCTBJUe7gAPVuXNn79WrV7TLEBGJKbNnz/7a3bs0dF/MBUGvXr3Iz8+PdhkiIjHFzFbs7T6dGhIRSXAKAhGRBKcgEBFJcAoCEZEEpyAQEUlwEQsCM3vKzNaa2fy93G9m9oCZLTGzeWY2IlK1iIjEsqkFpRz/+xn0vuN1jv/9DKYWlDbq/iN5RPAMcOY+7j8LyA6+xgKPRrAWEZGYNLWglPFTCiktr8CB0vIKxk8pbNQwiFgQuPsHwIZ9bHI+8JyHfAqkm1n3SNUjIhKLJkwvoqK6drd1FdW1TJhe1GjPEc0+gkyguN5ySbDuG8xsrJnlm1n+unXrmqQ4EZHmoLS8osH1ZXtZ/21EMwisgXUNzpLj7k+4e66753bp0uAnpEVE4sqmimrGT5m31/sz0tMa7bmiOcRECZBVb7kHUBalWkREmo23F67hV1MLWbelilH9u/Dx0vVUVtftuj8tJYlxo3Ma7fmiGQSvAjeZ2UTgaGCTu6+KYj0iIlH19dYq7n51Aa/NW0X/bu346w9yGdIjnakFpUyYXkRZeQUZ6WmMG53DmOENnkn/ViIWBGb2PHAy0NnMSoD/BlIA3P0xYBpwNrAE2A78KFK1iIg0Z+7OK3PL+PU/F7Ctqpb/PP1wrj+pLy2TQ2fvxwzPbNQ3/j1FLAjc/Yr93O/ATyL1/CIisaCsvIJfTZ3PjEVrGd4znXsvGkL2oe2atIaYG4ZaRCQe1NU5/5i1kt+/sYjaOueucwfww+N6kdSioetoIktBICLSxJZ/vY3bX5rHrOUbOKFfZ3534WCyOrWOWj0KAhGRJlJTW8eT/1rOn9/+kpbJLbj3oiFcktsDs6Y/CqhPQSAi0gQWlm3m9pfmUVi6iTMGHMpvxgzi0Pap0S4LUBCIiERUVU0tD81YwqMzl5LeOoWHrxzB2YO7Rf0ooD4FgYhIhMxesZHbX5rHkrVbuXBEJneeM4CObVpGu6xvUBCIiDSybVU13PdWEc98/BUZHdJ45kdHcXJO12iXtVcKAhGRRvTh4nWMn1JIycYKfnDsYfzizP60bdW832qbd3UiIjFi0/ZqfjttIZPzS+jTuQ2Trz+Wkb07RbussCgIREQO0pvzV3PnK/PZsG0HN57cl1tOzSY1JSnaZYVNQSAi8i2t3VLJ3a8uYFrhagZ0b8/TVx/FoMwO0S7rgCkIREQOkLszZU4p97y2kIrqWsaNzmHsiX1ISYrmFC/fnoJAROQAlGzczi9fns8HX67jyMM68oeLhtCva9tol3VQFAQiImGoq3P+/tkK/vDGIhz49XkDueqYw2gRhUHiGpuCQERkP5au28rtL84jf8VGvpPdmf+5ILqDxDU2BYGIyF5U19bxxAfLuP/dxaSlJHHfJUO5aERmsxoeojEoCEREGjC/dBO3vzSPBWWbOWtQN359/kC6tmseg8Q1NgWBiEg9ldW1PPDuYh7/YBkdW7fk0e+N4KzB3aNdVkQpCEREAnlfbeD2l+axbN02LjmyB786ZwAdWqdEu6yIUxCISMLbWlXDvW8u4rlPVpCZnsZz14zkxMO7RLusJqMgEJGE9v6X6/jllELKNlVw9XG9GDc6hzbNfJC4xpZYrRURCZRv38E9ry1kypxS+nZpwwvXH0tur9gYJK6xKQhEJKG4O2/MX81dr8ynfHs1N53Sj5tG9YupQeIam4JARBLG2s2V3PnKfKYvWMOgzPY8e81IBmbE3iBxjU1BICJxaWpBKROmF1FWXkFGeirfObwL0+atorKmjtvP7M913+lNcowOEtfYFAQiEnemFpQyfkohFdW1AJSWVzJxVjF9OrfhyR/m0qdLbA8S19gUhyISdyZML9oVAvVV1tQqBBqgIBCRuFNWXtHg+lXllU1cSWxQEIhI3MlITzug9YlOQSAiceeaE3p9Y11aShLjRuc0fTExQEEgInFn0aotJBl0a5+KAZnpafzuwsGMGZ4Z7dKaJV01JCJxZfnX25hSUMoPj+vNXd8dEO1yYoKOCEQkrtz/zpe0TGrBjSf3jXYpMUNBICJx48s1W3jl8zJ+eFwvurRrFe1yYoaCQETixl/e+ZI2LZO5/sQ+0S4lpigIRCQuLCjbxLTC1VxzQm86tmkZ7XJiioJAROLCn9/+kvapyVx7Qu9olxJzIhoEZnammRWZ2RIzu6OB+3ua2XtmVmBm88zs7EjWIyLxaW5xOe98sZaxJ/ahQ1r8Ty3Z2CIWBGaWBDwMnAUMAK4wsz2v5foVMNndhwOXA49Eqh4RiV9/fKuITm1acvXxOhr4NiJ5RDASWOLuy9x9BzAROH+PbRxoH9zuAJRFsB4RiUN5X23gw8Vfc8NJfWibYFNMNpZIBkEmUFxvuSRYV9/dwPfNrASYBtzc0I7MbKyZ5ZtZ/rp16yJRq4jEIHfnvulFdGnXiquO6RXtcmJWJIPAGljneyxfATzj7j2As4G/mdk3anL3J9w9191zu3TpEoFSRSQWfbx0PZ8t38BPTu5LWsvEnWryYEUyCEqArHrLPfjmqZ9rgckA7v4JkAp0jmBNIhIn3J0/vlVE9w6pXD6yZ7TLiWmRDII8INvMeptZS0Kdwa/usc1K4FQAMzuCUBDo3I+I7NfMonXMWVnOzaOyE3ri+cYQsSBw9xrgJmA68AWhq4MWmNk9ZnZesNl/AteZ2efA88DV7r7n6SMRkd24O396+0uyOqVxSW6PaJcT8yLaxe7u0wh1Atdfd1e92wuB4yNZg4jEn7cWrqGwdBMTLh5CiiagP2j6CYpITKmrc/701pf06dyGCzS/QKNQEIhITHm9cBVFa7Zwy2nZJOtooFHopygiMaOmto4/v/MlOYe247tDMqJdTtxQEIhIzHhlbhnL1m3j1tOzadGioY8qybehIBCRmFBdW8f97y5mYEZ7Rg/sFu1y4oqCQERiwouzS1i5YTv/ecbhmOlooDEpCESk2auqqeXBdxczLCudU3K6RrucuKMgEJFmb1JeMWWbKrntjBwdDUSAgkBEmrXK6loemrGEkb07cXy/Q6JdTlz6VkFgZq0auxARkYb8/dMVrN1SxX+err6BSNlvEJjZU3sst2WPYSNERCJhW1UNj85cyneyO3N0Hx0NREo4Yw2Vmtmj7n6jmXUEXgf+GuG6RCSBTS0oZcL0IkrLKwA48rCOUa4ovu33iMDd7wQ2m9ljwFvAH9396YhXJiIJaWpBKeOnFO4KAYDH31/G1ILSKFYV3/YaBGZ24c4vYBZwDFAAeLBORKTRTZheREV17W7rKqprmTC9KEoVxb99nRr67h7LBUBKsN6BKZEqSkQS05bK6t2OBOor28t6OXh7DQJ3/1FTFiIiiat8+w6e/ugrnv5o+V63yUhPa8KKEst+O4vNrAtwHdCr/vbufk3kyhKRRLB+axVP/ms5f/tkBVurahg98FAGZXTgkZlLdzs9lJaSxLjROVGsNL6Fc9XQK8CHwDtA7X62FRHZr7WbK3nig2X832crqayp5ZzB3blpVD/6d2sPQFan1kyYXkRZeQUZ6WmMG53DGE1CEzHhBEFrd7894pWISNwrK6/gsfeXMjGvmNo65/xhGfzklH707dJ2t+3GDM/UG38TCicIXjOzs4P5h0VEDtjK9dt5ZOYSXppTAsBFI3pw48l9OeyQNlGuTCC8ILgF+KWZVQHVgAHu7u0jWpmIxLyl67by8HtLeGVuGUktjCtG9uT6k/qSqY7fZmW/QeDu7ZqiEBGJH4tWb+ahGUt4vXAVqclJ/Oi4Xlx3Yh8ObZ8a7dKkAeEcERAMLZEN7PotuvsHkSpKRGJTYckmHpyxmLcWrqFNyyRuOKkvPz6hN4e01TiVzVk4l4/+mNDpoR7AXEKfMP4EGBXZ0kQkVsxesZGHZizmvaJ1tE9N5pZTs/nR8b1Ib90y2qVJGMLtIzgK+NTdTzGz/sCvI1uWiMSCT5et58EZi/loyXo6tWnJuNE5XHXsYbRPTYl2aXIAwgmCSnevNDPMrJW7LzIzfbJDJEG5Ox8u/pqHZixh1lcb6Ny2Ff919hF875ietG4Z1tlmaWbC+a2VmFk6MBV428w2AmWRLUtEmht3Z8aitTw4Ywlzi8vp3iGVX583kMuOyiI1JSna5clBCOeqoQuCm3eb2XtAB+CNiFYlIs1GXZ0zfcFqHpyxhIWrNtOjYxr/c8FgLjoyk1bJCoB4cEDHce7+fnB08Avgt5EpSUSag9o657V5ZTz83hK+XLOVPp3bcN8lQzl/WAYpSZruPJ7sNQjMLAu4E8ggdFroH8BvgKuA55ukOhFpctW1dUwtKOWRmUtZ/vU2Dj+0LfdfPoxzh2SQ1EJzBsejfR0RPAe8D7wEnAl8CiwAhrj76iaoTUSaUFVNLS/OLuHRmUsp2VjBwIz2PPb9EZwxoBstFABxbV9B0Mnd7w5uTzezNcBR7l4V+bJEpKlUVtcycdZKHv9gGas2VTIsK517zh/IKTldMVMAJIJ99hEEnyje+ZewGmhtZm0A3H1DhGsTkQjaVlXD/322gic+WM7XW6sY2asT9148hBP6dVYAJJh9BUEHYDb/DgKAOcF3B/pEqigRiZzNldX87ZMVPPnhMjZur+aEfp25edRwju5zSLRLkyjZ11SVvZqwDhGJsPLtO3jqo6945qPlbK6sYVT/rtw0qh8jenaMdmkSZfoYoEic+3prFU9+uJy/ffIV23bUMnrgodw8KptBmR2iXZo0EwoCkTi1Ztd0kCuoqqnj3CEZ3HRKP3K6aWR52V1Eg8DMzgTuB5KAJ9399w1scylwN6F+h8/d/cpI1iQS70rLK3hs5lIm5YemgxwzLJP/OKXvN6aDFNkp3PkITgCy3f1pM+sCtHX35ft5TBLwMHA6UALkmdmr7r6w3jbZwHjgeHffaGZdv21DRBLdivXbeOS9pbw0pwQzuPjIHtx4Uj96HtI62qVJMxfOfAT/DeQCOcDTQArwd+D4/Tx0JLDE3ZcF+5kInA8srLfNdcDD7r4RwN3XHmgDRBLdkrVbeeS9JbzyeWg6yO8d3ZOxmg5SDkA4RwQXAMMJLh119zIzC+ckYyZQXG+5BDh6j20OBzCzjwidPrrb3d/cc0dmNhYYC9CzZ88wnlok/i1avZkHZyxhWr3pIMee2Ieumg5SDlA4QbDD3d3MHGDnB8rC0NAnUryB588GTiY0A9qHZjbI3ct3e5D7E8ATALm5uXvuQyShFJZs4oEZi3l74RratkrmxpP6cq2mg5SDEE4QTDazx4F0M7sOuAb4axiPKwGy6i334JvzGJQQmvmsGlhuZkWEgiEvjP2LJJTZKzby4IzFzAymg/zZadlcfZymg5SDF858BPeZ2enAZkL9BHe5+9th7DsPyDaz3kApcDmw5xVBU4ErgGfMrDOhU0XLDqB+kbjm7ny6bAMPzljMx0v/PR3kD449jHaaDlIaSVhXDQVv/OG8+dd/TI2Z3QRMJ3T+/yl3X2Bm9wD57v5qcN8ZZrYQqAXGufv6A2qBSByYWlDKhOlFlJVXkJGexm1nHE6ntq14aMZi8r7aSJd2rfjVOUdw5dGaDlIan7k3fMrdzLbwzXP6EDr37+7ePpKF7U1ubq7n5+dH46lFImJqQSnjpxRSUV27a50ZuEP3DqnccFJfTQcpB83MZrt7bkP37WusIX38UKQJTJhetFsIQCgE0tNSeH/cKbRM1mxgEln7mqGsvbtvNrNODd2vYahFGkdZeUWD6zdVVCsEpEns62TjP4BzCQ1F7ex+OaiGoRZpBO5O29RktlTWfOO+DH0gTJrIvk4NnRt879105YgkjsrqWm574XO2VNaQZEZtvf66tJQkxo3OiWJ1kkj2e9xpZu+Gs05EwrdmcyWXPf4Jrxeu4o6z+nPfJUPITE/DgMz0NH534WDGDM+MdpmSIPbVR5AKtAY67zFlZXsgowlqE4lL80s38eNn89lcWc3j3z+SMwZ2A+CCET2iXJkkqn31EVwP/IzQm379KSs3ExpVVEQO0BuFq7h18lwOadOKF284jgEZUbkKW2Q3++ojuB+438xudvcHm7Amkbjj7jw0Ywl/fPtLRvRM5/GrcunSTmMDSfMQzhATD5rZcUCv+tu7+3MRrEskblRW1/KLF+fx6udlXDA8k99dOFgfDpNmJZz5CP4G9AXmEhoGAkKXjyoIRPZj7ZZKxj43m7nF5YwbncN/nNwXs4YG5hWJnnAGLckFBvjexqIQkQbNL93Edc/lU769mse+fyRnDuoW7ZJEGhTOxxbnA/oLFjkAb85fzSWPfQLACzccqxCQZi2cI4LOwEIzmwVU7Vzp7udFrCqRGOXuPDJzKROmFzEsK50nfnAkXdtpxjBp3sIJgrsjXYRIPKisrmX8lEJeLijlvKEZ3HvxEHUKS0wI56qh983sMCDb3d8xs9aE5hcQkcC6LVVc/7d85qws57YzDucnp/RTp7DEjHCuGrqO0MTxnQhdPZQJPAacGtnSRGLDwrLNXPdcPuu3VfHo90Zw1uDu0S5J5ICE01n8E+B4Qp8oxt0XA10jWZRIrHhrwWoufuxjauucF284TiEgMSmcPoIqd9+x8zDXzJJpeOYykYTh7jz2/jLunb6IIZkd+OsPcunaXp3CEpvCCYL3zeyXQFowif1/AP+MbFkizVdVTahTeMqcUs4d0p37LhmqTmGJaeEEwR3AtUAhoYHopgFPRrIokebq661V3PC32eSv2Mitpx3OT09Vp7DEvnCCIA14yt3/CmBmScG67ZEsTKS5WbR6M9c+E+oUfvjKEZwzRP0BEh/C6Sx+l9Ab/05pwDuRKUekeXr3izVc9MjH1NTVMfn6YxUCElfCOSJIdfetOxfcfWvwWQKRuOfu/PXDZfzujUUMygh1CnfroE5hiS/hBME2Mxvh7nMAzOxIoCKyZYlEX1VNLb96eT4vzC7hnMGhTuG0luoUlvgTThDcArxgZmXBcnfgssiVJBJ967dWcePf5zDrqw3ccmo2t5yaTYsW6hSW+LTPIDCzFkBLoD+QQ2i6ykXuXt0EtYlERdHqLVz7bB7rtlTxwBXDOW+opuiW+LbPIHD3OjP7o7sfS2g4apG49t6itdz8fAFpLZOYdP2xDMtKj3ZJIhEXzlVDb5nZRaaLpSWOuTtPfriMa5/N47BDWvPqTccrBCRhhNNH8HOgDVBrZhWETg+5u7ePaGUiTWRHTR13vTKfiXnFnDmwG3+6bCitW4bz0hCJD+EMQ92uKQoRiYYN23Zw499n89nyDdx0Sj9+fvrh6hSWhBPOMNQGfA/o7e6/MbMsoLu7z4p4dSIRtHjNFq59Np/Vmyu5//JhnD8sM9oliURFOMe/jwB1wCjgN8BW4GHgqAjWJdLophaUMmF6EWXlFXRq05KtldW0S2vJpLHHMLxnx2iXJxI14QTB0e4+wswKANx9o5m1jHBdIo1qakEp46cUUlFdC8D6bTsw4Cen9FUISMIL56qh6mCgOQcwsy6EjhBEYsaE6UW7QmAnB578cHl0ChJpRsIJggeAl4GuZvZb4F/A/0S0KpFGVlbe8Kgoe1svkkjCuWro/8xsNqE5ig0Y4+5fRLwykUbg7vxj1sq9TqmXkZ62l3tEEsdeg8DMUoEbgH6EJqV53N1rmqowkYO1aXs1d0yZxxvzV5NzaFtWrN9OZc2/z2qmpSQxbnROFCsUaR72dWroWSCXUAicBdx3oDs3szPNrMjMlpjZHfvY7mIzczPLPdDnEGnI7BUbOPuBD3l74RrGn9WfN245kd9fNITM9DQMyExP43cXDmbMcF0yKrKvU0MD3H0wgJn9L3BAnxsIOpgfBk4HSoA8M3vV3RfusV074KfAZweyf5GG1NY5j85cwp/fWUxmehov3njcrqEixgzP1Bu/SAP2FQS7Rhh195pvMdTQSGCJuy8DMLOJwPnAwj22+w1wL3DbgT6BSH1rNlfys4lz+WTZer47NIPfXjCI9qkp0S5LpNnbVxAMNbPNwW0D0oLlcMcaygSK6y2XAEfX38DMhgNZ7v6amSkI5FubsWgNt70wj4odtdx70RAuye2hSeVFwrTXIHD3g52KqaFX4a6LN4K5Dv4MXL3fHZmNBcYC9OzZ8yDLknhSVVPLvW8W8b//Wk7/bu146MoR9OvaNtplicSUSA6xWAJk1VvuAZTVW24HDAJmBv+5dQNeNbPz3D2//o7c/QngCYDc3Ny9XQkoCWb519u4+fk5zC/dzA+PPYzxZx9BaoqmkhQ5UJEMgjwg28x6A6XA5cCVO+90901A553LZjYTuG3PEBBpyJQ5Jdw5dT4pyS144qojOWNgt2iXJBKzIhYEQQfzTcB0IAl4yt0XmNk9QL67vxqp55b4tbWqhjunzuflglJG9u7E/ZcPo3sHfShM5GBEdPYNd58GTNtj3V172fbkSNYisa+wZBM3Pz+HlRu287PTsrl5VDZJmjtA5KBpGiZp9tyd//3Xcv7w5iI6t23F89cdw9F9Dol2WSJxQ0Egzdr6rVXc9sLnvFe0jtMHHMq9Fw2hYxuNgi7SmBQE0mx9vORrfjZpLuUV1dxz/kCuOuYwfTZAJAIUBNLsVNfW8Zd3vuSRmUvp07kNz/xoJAMy9vf5RRH5thQE0qwUb9jOLRMLmLOynMtys/jv8wbQuqX+TEUiSa8waTamFa7i9pfmgcMDVwznvKEZ0S5JJCEoCCTqKnbUcs9rC3l+1kqGZqXz4OXD6XlI62iXJZIwFAQSVUWrt3Dz83P4cs1Wrj+pD7edkUNKUjgzqIpIY1EQSFTsnELynn8upF1qCs9dM5ITD+8S7bJEEpKCQJpc/Skkv5PdmT9dOowu7VpFuyyRhKUgkCaV/9UGbpk4lzWbKxl/Vn+u+04fWmiYCJGoUhBIk9jXFJIiEl0KAom4+lNInhdMIdlOU0iKNBsKAomo3aaQvHgIlxypKSRFmhsFgUREVU0tf3ijiKc+Ws4R3dvz4BXDNYWkSDOlIJBGt2zdVm5+voAFZZu5+rhe3HFWf00hKdKMKQikUb00u4Q7X5lPy+QW/PUHuZw+4NBolyQi+6EgkEahKSRFYpeCQL6VqQWlTJheRFl5BZ3btcLr6tiwvZpbTzucm0b10xSSIjFEQSAHbGpBKeOnFFJRXQvAui1VANw8qh+3nJYdzdJE5FvQ6F5ywO6dvmhXCNQ3ZU5pFKoRkYOlIwIJ27J1W5mUX0xZeWWD95eVVzRxRSLSGBQEsk8VO2qZVriKSXnFzPpqA8ktjNTkFlTW1H1j24x0dQ6LxCIFgTRofukmJuat5JWCMrZU1dC7cxvuOKs/F47I5OMl63frIwBIS0li3OicKFYsIt+WgkB22bS9mlc+L2XirGIWrtpMq+QWnDO4O5cdlcXI3p12DQ0xZngmwK6rhjLS0xg3OmfXehGJLQqCBOfufLpsA5Pzi5lWuIqqmjoGZbbnN2MGcd7QDDqkNTw43JjhmXrjF4kTCoIEtXZzJS/OKWFyXjFfrd9Ou9RkLjsqi0tzsxiU2SHa5YlIE1IQJJCa2jpmFq1jYl4x7xWtpbbOObp3J245LZuzBnXXeEAiCUpBkABWrN/G5PxiXsgvYe2WKrq0a8XYE/twaW4WvTu3iXZ5IhJlCoI4VVldy/QFq5k4q5hPlq2nhcGo/l25NDeLU/p3JSVJnyUUkRAFQZxZWLaZSXkrmTq3jE0V1fTs1Jpxo3O4aEQPunVIjXZ5ItIMKQjiwObKav75eRmT8oqZV7KJlsktOGtQNy47Kotjeh+iyeFFZJ8UBDHK3clfsZGJs4p5vbCMyuo6+ndrx93fHcCY4Zmkt24Z7RJFJEYoCGLMui1VTJlTwqT8Ypat20bbVslcOKIHlx+VxeDMDpoPWEQOmIIgBtTWOR8sXsekWcW888Uaauqco3p15D9O7sfZg7vRuqV+jSLy7ekdpBkr3rCdF/KLeWF2Cas2VXJIm5Zcc0JvLs3N0kTwItJoFATNTFVNLW8tWMPk/GL+teRrAE46vAt3nTuAU484lJbJuuxTRBqXgqCZKFq9hUl5xbxcUMLG7dVkpqfxs1MP5+LcHmRqeGcRiaCIBoGZnQncDyQBT7r77/e4/+fAj4EaYB1wjbuviGRNzcnWqhpe+7yMiXnFzC0uJyXJOGNgNy4/Kovj+3bWZZ8i0iQiFgRmlgQ8DJwOlAB5Zvaquy+st1kBkOvu283sRuBe4LJI1dQcuDtzVpYzOa+Yf84rY/uOWrK7tuVX5xzBhSN60KmNLvsUkaYVySOCkcASd18GYGYTgfOBXUHg7u/V2/5T4PsRrCeqNmzbEbrsM6+YxWu30rplEt8dksFlI7MYnpWuyz5FJGoiGQSZQHG95RLg6H1sfy3wRkN3mNlYYCxAz549G6u+iKurc/615Gsm5RXz1sLVVNc6w3um84eLBnPOkAzatlIXjYhEXyTfiRr6F9cb3NDs+0AucFJD97v7E8ATALm5uQ3uozkpK6/ghfwSJucXU1peQcfWKVx1TC8uOyqLnG7tol2eiMhuIhkEJUBWveUeQNmeG5nZacB/ASe5e1UE64moHTV1vPvFGibmFfPB4nW4w3eyOzP+7P6cPuBQWiVrrH8RaZ4iGQR5QLaZ9QZKgcuBK+tvYGbDgceBM919bQRriZgla0OXfU6ZU8r6bTvo3iGVm0dlc8mRPcjq1Dra5YmI7FfEgsDda8zsJmA6octHn3L3BWZ2D5Dv7q8CE4C2wAtBZ+lKdz8vUjU1lu07anh93iom5RWTv2IjyS2M0444lMtGZnFidheSdC2ahMwAAAoaSURBVNmniMSQiPZWuvs0YNoe6+6qd/u0SD5/Y3J3Pi/ZxKS8Yv75eRlbq2ro06UNvzy7PxcM70GXdq2iXaKIyLeiy1b2o3z7Dl4uKGVSXjGLVm8hNaUF5wzO4PKRWeQe1lGXfYpIzFMQNKCuzvlk2Xom5hUzfcFqdtTUMaRHB357wSC+OzSD9qkp0S5RRKTRKAjqWb2pkhdnFzMpv5jiDRW0T03miqOyuPSoLAZmdIh2eSIiEZHwQVBdW8eMRWuZlFfMzKK11Dkc2+cQbjsjh9EDu5Gaoss+RSS+JUQQTC0oZcL0IsrKK8hIT2Pc6ByG9OjApPxiXppdytdbq+jarhU3ntyXS3OzOOyQNtEuWUSkycR9EEwtKGX8lEIqqmsBKC2v4OeT51LnkNTCOCWnK5cflcXJOV1ITtJY/yKSeOI+CCZML9oVAjvVObRPTeadn59E1/apUapMRKR5iPt/gcvKKxpcv6WyRiEgIkICBEHGXmb32tt6EZFEE/dBMG50Dml7XPmTlpLEuNE5UapIRKR5ifs+gjHDMwG+cdXQzvUiIoku7oMAQmGgN34RkYbF/akhERHZNwWBiEiCUxCIiCQ4BYGISIJTEIiIJDhz92jXcEDMbB2wot6qzsDXUSqnKcR7+yD+26j2xb54aONh7t6loTtiLgj2ZGb57p4b7ToiJd7bB/HfRrUv9sV7G3VqSEQkwSkIREQSXDwEwRPRLiDC4r19EP9tVPtiX1y3Meb7CERE5ODEwxGBiIgcBAWBiEiCi6kgMLNUM5tlZp+b2QIz+3WwvreZfWZmi81skpm1jHatB8PMksyswMxeC5bjpn1m9pWZFZrZXDPLD9Z1MrO3g/a9bWYdo13nwTCzdDN70cwWmdkXZnZsvLTRzHKC393Or81m9rN4aR+Amd0avL/MN7Png/eduHkNNiSmggCoAka5+1BgGHCmmR0D/AH4s7tnAxuBa6NYY2O4Bfii3nK8te8Udx9W77rsO4B3g/a9GyzHsvuBN929PzCU0O8yLtro7kXB724YcCSwHXiZOGmfmWUCPwVy3X0QkARcTvy9BncTU0HgIVuDxZTgy4FRwIvB+meBMVEor1GYWQ/gHODJYNmIo/btxfmE2gUx3j4zaw+cCPwvgLvvcPdy4qiN9ZwKLHX3FcRX+5KBNDNLBloDq4jz12BMBQHsOm0yF1gLvA0sBcrdvSbYpASI5Vlo/gL8AqgLlg8hvtrnwFtmNtvMxgbrDnX3VQDB965Rq+7g9QHWAU8Hp/eeNLM2xFcbd7oceD64HRftc/dS4D5gJaEA2ATMJr5eg98Qc0Hg7rXBYWkPYCRwREObNW1VjcPMzgXWuvvs+qsb2DQm2xc43t1HAGcBPzGzE6NdUCNLBkYAj7r7cGAbMXqaZF+Cc+TnAS9Eu5bGFPRtnA/0BjKANoT+VvcUy6/Bb4i5INgpONyeCRwDpAeHcRAKiLJo1XWQjgfOM7OvgImEDkf/Qvy0D3cvC76vJXRueSSwxsy6AwTf10avwoNWApS4+2fB8ouEgiGe2gihN8c57r4mWI6X9p0GLHf3de5eDUwBjiOOXoMNiakgMLMuZpYe3E4j9Ev7AngPuDjY7IfAK9Gp8OC4+3h37+HuvQgdds9w9+8RJ+0zszZm1m7nbeAMYD7wKqF2QQy3D8DdVwPFZpYTrDoVWEgctTFwBf8+LQTx076VwDFm1jron9v5+4uL1+DexNQni81sCKGOmiRCITbZ3e8xsz6E/oPuBBQA33f3quhVevDM7GTgNnc/N17aF7Tj5WAxGfiHu//WzA4BJgM9Cb0QL3H3DVEq86CZ2TBCnf0tgWXAjwj+XomDNppZa6AY6OPum4J1cfM7DC5LvwyoIfR6+zGhPoGYfw3uTUwFgYiINL6YOjUkIiKNT0EgIpLgFAQiIglOQSAikuAUBCIiCU5BIM2CmbmZ/a3ecrKZrds5Aus+HjfMzM6ut3y3md0WyVr3eP5eZnZlveVcM3vgIPeZY2Yzg9E9vzCzuJ4dS6JPQSDNxTZgUPBBQYDTgdIwHjcMOHu/W0VOL2BXELh7vrv/9CD3+QChkS6HufsRwIMHuT/MLOlg9yHxS0EgzckbhEZehT0+uWpmI83s42Agt4+D/5pbAvcAlwX/PV8WbD4g+I96mZn9tN4+vm+h+SzmmtnjO98czWyrmf0hGAjvneC5dj7+vGCbXmb2oZnNCb6OC3b7e+A7wT5vNbOT7d/zSLQ1s6ctNP/CPDO7KBg08ZlgrPtCM7u1gZ9Dd0JDVQDg7oXB/pLM7L56+7s5WH9q8HMpNLOnzKxVsP4rM7vLzP4FXGJmfc3szaCdH5pZ/2C7S4J6PjezDw7i9yexyt31pa+ofwFbgSGExuZJBeYCJwOvBfe3B5KD26cBLwW3rwYeqrefu4GPgVZAZ2A9oeHKjwD+CaQE2z0C/CC47cBZwe2XgbeCxwwF5gbrWwOpwe1sID+4vavGPZcJjWH/l3r3dSQ0hv/b9dalN/Cz+BGhUS/fAG7duQ1wI/BSvZ9Dp+BnVQwcHqx7DvhZcPsr4Bf19vsukB3cPprQECYAhUDm3urRV/x/7RxESSTq3H2emfUidDQwbY+7OwDPmlk2oTfulH3s6nUPffy/yszWAocSGjPmSCAvNIQMafx7YLQdwJvB7UKgyt2rzayQ0Kkfgud7KBg+ohY4PIwmnUZozKid7dtoZsuAPmb2IPA6odDZjbs/bWbTgTMJjYR5vZkNDfb3mAfDIbv7hmD9cnf/Mnj4s8BPCA1WCDAJQkcnhAZPeyFoP4TCEuAj4Bkzm0xokDVJMAoCaW5eJTQe/MmE5mLY6TfAe+5+QRAWM/exj/pjwNQS+js34Fl3H9/A9tXuvnOslbqdj3f3unojTt4KrCF0lNACqAyjLcYewxUHYTAUGE3oDftS4Jo9H+ihUVqfAp4ys/nAoIb2R8PDlNe3LfjegtCY+sMaeK4bzOxoQqfl5prZMHdfv7/GSfxQH4E0N08B93hwXryeDvy78/jqeuu3AO3C2O+7wMVm1hV2zZN82AHU1QFY5e51wFWEBj7c3/O/Bdy0c8HMOppZZ6CFu78E3EloiOrdmNmZZpYS3O5GKBBLg/3dsDOczKwTsAjoZWb9godfBby/5z7dfTOw3MwuCR5rQSBhZn3d/TN3vwv4GsgK82cicUJBIM2Ku5e4+/0N3HUv8Dsz+4h/vwlDaHjgAXt0Fje034XArwjNjjaP0Ox23Q+gtEeAH5rZp4ROC+38T3seUBN0tO7Z8fv/gI47O2KBUwiNYjnTQrPsPQM0dIRyBrDzMdOBcR4a3vpJQiN7zgvuu9LdKwn1KbwQnMqqAx7bSxu+B1wbPHYBodNOABOCjub5wAfA5+H/WCQeaPRREZEEpyMCEZEEpyAQEUlwCgIRkQSnIBARSXAKAhGRBKcgEBFJcAoCEZEE9/8B0JuLo5hKArwAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "plt.plot(df['Mathematics_score'], df['Percentile_rank'], '-o')\n", "plt.xlabel('Mathematics Scores')\n", "plt.ylabel('Percentile Rank')\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 39, "metadata": {}, "outputs": [], "source": [ "# understand Empirical_CDF and shit" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Refs:\n", "[1](https://github.com/neopanther/statistics/blob/master/4%20Modeling%20data%20distributions_khan/1%20Calculating%20percentile.ipynb)\n", "[2](https://github.com/neopanther/statistics/blob/master/4%20Modeling%20data%20distributions_khan/2%20Analyzing%20a%20cumulative%20relative%20frequency%20graph.ipynb)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.12" } }, "nbformat": 4, "nbformat_minor": 4 }